# Three-Dimensional Modeling of the Big Hill Strategic Petroleum Reserve Site, Texas

Christopher A. Rautman<sup>1</sup>, Ken Weisenburger<sup>2</sup>, Richard Uden<sup>2</sup>, Cecelia V. Williams<sup>1</sup>



<sup>1</sup>Sandia National Laboratories, Albuquerque, New Mexico



<sup>2</sup>Continuum Resources, Houston, Texas

Funded by the U.S. Department of Energy Strategic Petroleum Reserve Project Management Office New Orleans, Louisiana





#### **Presentation Outline**

- Background
- Objectives of the study
- Integrated Data Sources
- Iterative Gravity Modeling
- Results
  - Minimization of residual gravity anomaly
  - Proximity of SPR caverns to salt flanks
- Conclusions



### Background

The Big Hill salt dome in southeastern Texas contains' 14 solution-mined underground storage caverns used by the U. S. Department of Energy as part of the nation's Strategic Petroleum Reserve.

The site was characterized in ~1980 and the SPR caverns were developed in mid-late 1980s.

Current storage capacity is ~170 millions barrels, with ~90 million barrels of oil in storage.

### **Project Objectives**

- To demonstrate the utility of state-of-the-art 3-D modeling and visualization techniques
- To produce an updated model of the Big Hill Salt Dome using data newly available since circa-1980



#### Available Data

- ~90 wells with formation tops (dating to 1920's)
- 2-D shallow, high-resolution seismic survey, acquired 1991 for Sandia
- 3-D seismic survey, acquired 1997 by Veritas DGC (60 sq.mi. total; used 9 sq.mi.)
- Extensive gravity measurements, acquired ~1970s-1980s by GETECH, Inc. (800+ stations)
- Down-hole cavern sonar surveys by Sonarwire



## The Big Hill Site Area with Gravity Coverage 60-sq.mi. / Seismic







GETECH, Incorporated Houston, Texas

### 3-D Seismic Survey Coverage



#### Source:

- Dynamite
- 220 ft spacing on 1760 ft lines
- Orientation: NE-SW
- 72 stations per square mile
  - Receivers:
- 220 ft spacing on 1760 ft lines
- Orientation: N-S
- 72 stations per square mile
- Geometry: 8 x 144 channels

Veritas Land Surveys
Houston, Texas



### 2-D Gravity Profiles

9-sq.mi. 3-D seismic coverage



#### Source:

- Airgun (10 cu.in.)
- 25 ft spacing

#### Receivers:

- 25 ft spacing
- Geometry: 3 x 24 channels

Walker Geophysical Essex, Iowa



### Well Control Database

9-sq.mi. 3-D seismic coverage



hydrocarbon E&P wells

SPR cavern wells



### Geologic Cross Section

of the Big Hill Salt Dome

NW SE



approximately
1-mile in
diameter; roughly
circular

prominent overhang to south

oil production from upturned Miocene sediments

Sandia National Laboratories

5,000 ft

site-characterization model figure from Magorian & Neal, 1988

### Iterative Gravity Modeling

- Compute standard Bouguer gravity field using field data
- Interpret 3-D seismic to define basic outline of salt dome
- Constrain geometric interpretation with well control
- Interpret caprock geometry with 2-D seismic and well control
- Define 3-D geometric model of salt, caprock, sediments
  - Compute Bouguer gravity model of 3-D geometric model
  - Compute residual gravity anomaly field:  $\Delta g = g_{\text{earth}} g_{\text{model}}$
  - Adjust geometric model (salt and caprock) to reduce residual anomalies
  - Repeat .....
- Insert SPR cavern models and compute proximity indicators

forward gravity modeling uses the methodology of Talwani & Ewing (1960), as implemented in proprietary software by GETECH, Inc.



### Bouguer Gravity Response Target for Iterative Gravity Modeling



Note broad gravity low related to deep-seated salt; sharp gravity high related to shallow dense caprock





## Initial Geometric and Gravity Model







### Comparison of Initial and Final Geometric Models





# Minimization of Residual Gravity Anomaly Directly Associated with Salt



prominent annular, positive anomaly related to caprock

better salt flank; still too much high-density caprock bland, near-zero residual closely matches target gravity model

 $\Delta g = g_{\text{earth}} - g_{\text{model}}$ 







## Visualization of SPR Storage Caverns

Sonar surveys indicate modestly complex cavern forms



Red dots on sonarsurveyed caverns indicate points of greatest radius



### Cavern Locations Relative to Salt Dome Flanks

Red dots on sonarsurveyed caverns indicate points of greatest radius





### Quantitative Measurement of Closest-Approach Distances

Closest-Approach 3-D Vectors

Design cavern stand-off distance based on pillar-to-diameter ratio after 5 fill-and-leach cycles

Design edgestand-off distance is similar





### Cavern "Tour" Inside the Dome



# "Tour" of the Caverns Animated



### Proximity of Potential Expansion Caverns to Salt Flank





### Conclusions (1)

- Computer-based 3-D model constructed for the Big Hill salt dome using post-1980 data
- Model constructed using iterative technique to match extensive surface-gravity data base
- Model honors all available data (gravity, 2-D and 3-D seismic, well control, down-hole cavern surveys) within limits imposed by professional judgment
- Visualization in 3-D useful for qualitative and conceptual understanding of geology and engineered structures



### Conclusions (2)

- Volume of salt allowed by gravity modeling is markedly reduced (~36 percent overall) over that permitted by seismic interpretation and wellcontrol data
- There is a preferred orientation of dissolution implied by the maximum diameters of the sonarmeasured down-hole cavern images
- Stand-off distances have been measured for both existing and potential SPR caverns; these generally meet design criteria